

Study summary

Assumptions for the study and main questions we want to answer

Rationale for the study

• The freight transport (light and heavy trucks) and the public transport (bus) sector places particular emphasis on operational efficiency and the provision of low-cost solutions. From this perspective, the introduction of vehicles powered by alternative fuel sources can be challenging due to the potential higher total cost of ownership.

• Within Motus-E working group (logistics and bus), we have the common goal of accelerating the decarbonisation of the Truck-Bus segment, also with a view to the decarbonisation planned for the transport sector by 2050.

Main questions we want to answer

What is the **current starting point** today in terms of differential TCO between the different power sources in the Truck-Bus segments?

What are the main regulatory/financial incentives available to support electrification?

What actions can we take as industry players to accelerate electrification?

Focus on LCVs, HDVs and city buses

Approach to TCO

- Purchase of a new vehicle today, with sale after 6 years of use; alternative business models (e.g., leasing, rental) are excluded from the calculation
- Focusing the evaluation on the differential cost items between the different power sources
- Considered a market benchmark to date, without potential upsides related to electrification (e.g., incentives, financial leverage)

Scope of the study

	Light trucks LCV	Heavy trucks HDV	Bus 12 meters		
Power sources	Diesel	Diesel	Diesel		
	Electric	Electric	Electric		
•		LNG	CNG		
Mission	Freight transport	Freight transport	Transport of people		
Type of transport	Urban	Extra-urban	Urban		
Km / year	80.000	120.000	55.000		
Sources	OEM Truck, Utilities Co., Logistics Co., MASE, Bocconi GREEN, IMU Intelligence, and other industry literature				

More and more companies require vehicle delivery models based on rental or leasing formulas, whose fee, however, internalizes higher financial/operating costs: for this reason, the TCO of this analysis has focused on the purchase (focus next page)

Vehicle disposal models and potential cost implications

Main features

Purchase

- Vehicle purchase via direct payment
- It provides for the transfer of ownership and assumption of the risk related to the residual value in the resale at the end of the period of use

Leasing

- Financial contract with monthly fee for use of the vehicle
- No transfer of ownership, net of potential final redemption payment
- Operating costs borne by the user

Long-term rental

- Formula with **fixed monthly fee**
- No transfer of ownership
- Main operating costs borne by the rental company (excluding fuel and extraordinary maintenance)

Impact on vehicle types

Light trucks

Heavy trucks

Bus

Light trucks **Heavy** trucks

Bus

Light trucks Heavy trucks

Bus

Key numbers

- Variable purchasing costs based on segments and power sources (focus on next page)
- ~25% terminal value after 6 years

- 90% of the trucks are sold in Italy on **60-month leasing formula.**
- 80% of leasing use formulas without BuyBack* with low redemption and higher installments.
- The BEV with BuyBack formula is more competitive when compared to a diesel without BuyBack.
- The rental cost varies based on duration, down payment, services, and residual value (e.g., in Italy for a 36-month contract with mileage between 45,000 and 60,000 km, the installments are approximately €400 with a down payment of €5,000).
- There is no provision for redemption at the end of the contract.

Cost impact vs. purchasing model

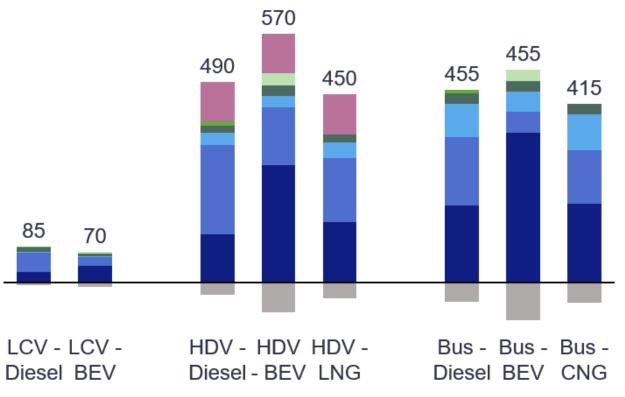
Model used for TCO calculation

The fee internalizes higher financial costs and services that user decides to add as well as the risk associated with resale

 \bigcirc

The fee internalizes higher financial costs and services that user decides to add as well as the risk associated with resale

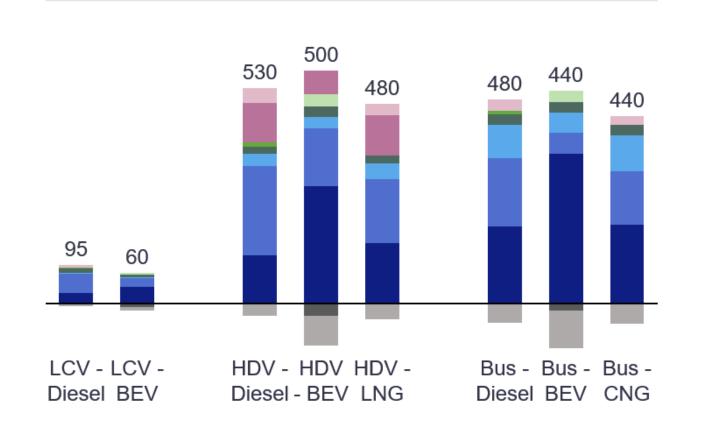
*Buyback: a formula that provides for the immediate transfer of ownership of the asset, in exchange for financing of a portion of the latter with a clause for payment of the residual value at the end of the lease.



Competitive EVs in the LCV and Bus segments Additional levers to be activated for HDV

TCO – Base case | k€ over 6 years of use

APPROACH


- Focus on **differential cost items** between power sources
- Purchase of a new vehicle today (2025), with resale after 6
 years of use
- Based **on current market conditions**, without potential upside related to electrification (e.g., incentives, financial leverage)

TCO – Upside case | k€ over 6 years of use

UPSIDE CONSIDERATIONS

- Introduction of electric CICs from 2026 for owners of electric trucks and buses (valued as per the Motus-e – MASE proposal)
- Application of ETS tax on fuel consumption from 2027
- Partial toll exemption considered from 2026 as per Eurovignette regulation (assumed exemption of ~50%)

Key observations

- Currently, BEV vehicles are competitive vs. diesel in the LCV truck and bus segments
- The TCO of electric vehicles has a higher incidence of purchase cost and lower operating costs compared to diesel/LNG/CNG
- In the TCO for trucks, additional economic/financial levers must be considered that make BEVs more competitive than other fuels.

Insurance

oll

ETS

CI

Main regulatory levers, non-repayable grants and financial instruments

Main types of facilitating levers

Detailed analysis on a dedicated page

Effect

Regulatory Measures

Presence of regulatory obligations or incentives that encourage the adoption of green vehicles (e.g., Eurovignette)

Non-repayable contributions

Funds/financing incentives made available for the purchase of green vehicles

Reducing vehicle costs for the logistics company

Debt or credit financial instruments

Various debt/credit instruments (e.g. favorable lending rates) to support the transition

Green premium for electric logistics

Additional remuneration for sustainable logistics service

Revenue
increase i.e.,
sustainable
logistics service
fee

Various financial instruments from banks to support sustainability projects

DEBT INSTRUMENTS ...

Sustainability-linked

- Financing with conditions (incl. interest rates) linked to the achievement of specific sustainability targets (SPTs 1)
- Goals are measured against the company's ESG KPIs
- **Benefit** upon reaching targets of $\sim 0.1 0.2\%$ on the rate

Project specific

E- mobility specific

Green financing (project finance)

- Financing with funds exclusively earmarked for projects with a positive impact on the environment
- Green Loans specific for green projects (project fin)
- ~ 0.5-1% lower rate vs. standard financing

Project specific

E- mobility specific

E- mobility financing specific (project finance)

- Category of Green Loans intended exclusively for electric mobility projects
- They support the purchase of electric vehicles (EVs), charging infrastructure and other related technologies (e.g. PV)

Project specific

E- mobility specific

...AND CREDIT

Certificates of Release for Consumption (CIC) / White Certificates

Electric CICs : RED-III proposal brought to MASE by Motus-E

TOOLS PROVIDED BY... (not exhaustive)

White certificates:

white certificates for fleet electrification

Customers are willing to pay a "green premium" for sustainable logistics services

Green brand value

- Especially in B2C sectors, sustainability is becoming a relevant element for brand positioning
- The effort towards decarbonisation often includes Scope 3 emissions; i.e. emissions from one's customers and suppliers (including logistics ones).

Financial benefits

- Like logistics companies, their customers can also enjoy financial benefits for the decarbonisation journey
- This may incentivize them to select suppliers that increase the banks' ESG scores towards them.

Green premium

 Companies may therefore be willing to pay a green premium to their suppliers for a more sustainable good/service (such as an electric vs. traditionally sourced logistics service)

Examples of decarbonisation targets

Goal 3 Target (@2030)

Specific targets on logistics

-43% Scope 3 emissions including materials, logistics, and packaging

100% green vehicles for S. Pellegrino water logistics

-25% scope 3 emissions per ton of product sold

Examples of financial benefits

Detailed analysis on a dedicated page

Market research examples (Europe)¹

Chemicals: >95% of customers are willing to pay a green premium (of which 35%+ over 5%)

Metals: >90% of customers are willing to pay a green premium (of which 35% are willing to pay more than 5%)

Automotive: >90% of customers are willing to pay a green premium (of which 50%+ over 5%)

Incentives

Vehicle

The White Certificates system

ITALY The obligated parties are electricity and gas suppliers with more than 50,000 customers. Incentive

500€

1.500 €

29.000 €

31.000 €

Unit of measurement 1 TEP, equal to approximately 5 MWh of annual savings. Value equal to €250-400

Not combinable with other national incentives but only with regional or European funds

Centralized market managed by GSE

Extremely high bureaucracy to certify savings

FRENCH CASE

55.000 €

95.000 €

1. Establishment of a single fund for energy efficiency projects.

Unit of measurement cumulative kWh (no minimum required)

The fund supports ecobonuses and social leasing, without impacting public finances.

Proposals for improving the White Certificate system

Cumulation (Article 10, paragraph 1, of the Ministerial Decree of 11 January 2017)

• It would be appropriate to provide the opportunity to fully combine incentives with national incentives, including those deriving from European funds/NRRP, such as the upcoming MASE incentives for microenterprises and MiMIT, for supporting the renewal of the N1 and N2 fleets, or with the Social Climate Fund, to develop the mechanism's potential. Other countries, such as France and Spain, do not have this limit.

Use of renewable sources in the transport sector

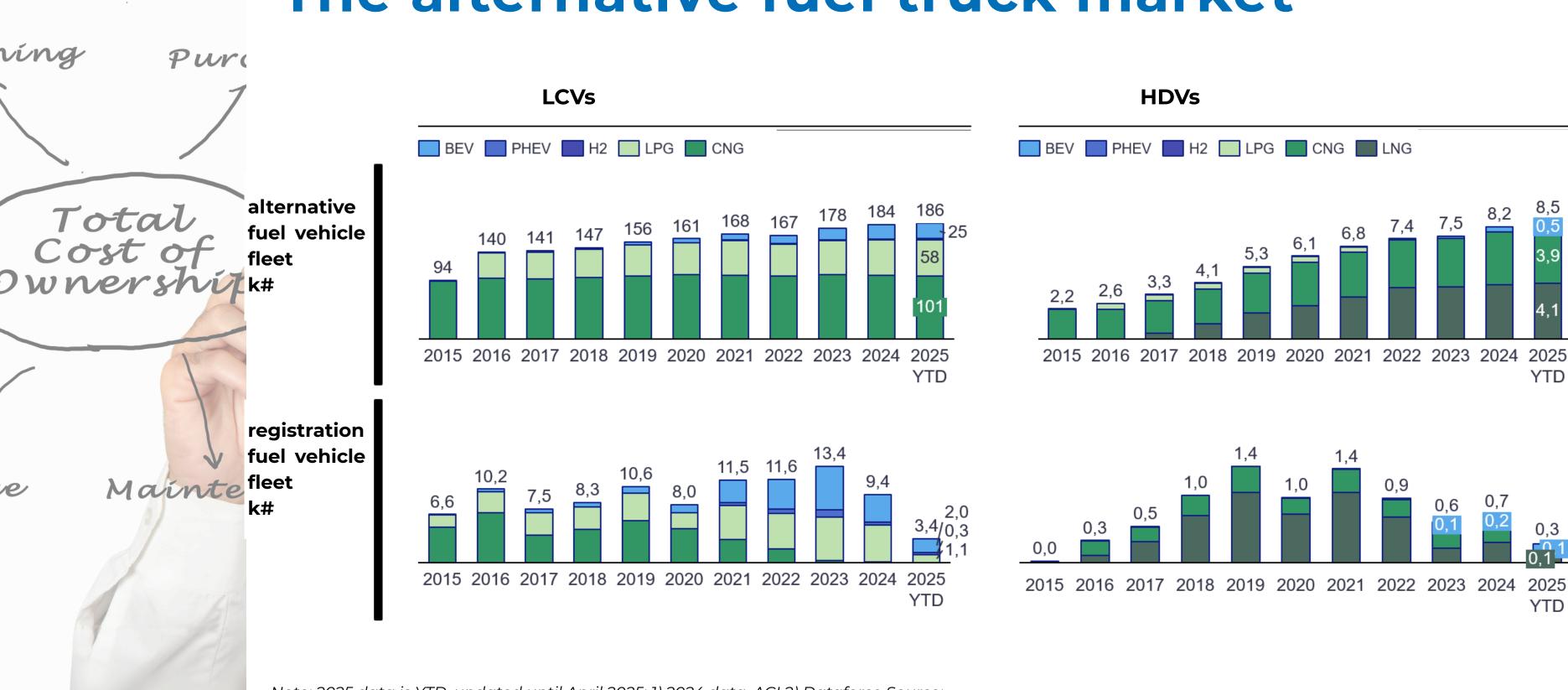
• It is proposed to extend the use of the coefficient that rewards the use of RES (currently only applicable to cars) to other types of vehicles such as trucks and buses, thus further supporting the electrification of two key segments in terms of achieving European decarbonisation targets (e.g., all new urban buses will have to be zero-emission by 2035).

Further comparisons with European systems

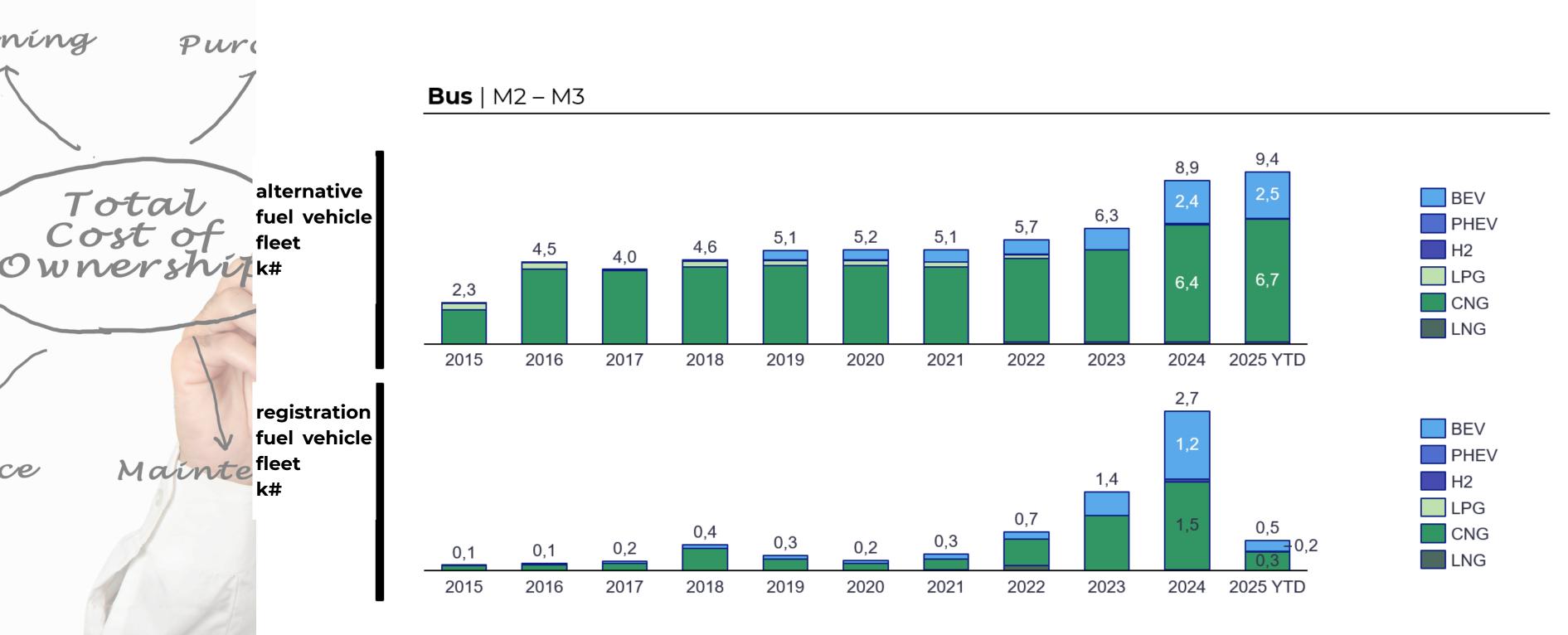
• It is proposed to use VECTO (link), developed by the European Commission, to determine CO2 emissions and fuel consumption for trucks and buses, replacing the currently required and cumbersome certifications. Since January 1, 2019, VECTO has been mandatory for new heavy-duty vehicles, providing certified data that supports pre- and post-repair measurements, standardizes efficiency, and facilitates the verification of savings. In France, the proceeds from the exchange of certificates, special projects, and penalties for failure to achieve targets are placed in a fund that fully finances both the Ecobonus and Social Leasing for private citizens.

• It is proposed to eliminate the minimum savings threshold for accessing the White Certificate system: currently, in fact, a saving of at least 1 TOE (approximately 5 MWh per year) is expected, unlike in France, for example, where only cumulative kWh are measured, with no access limit.

Final considerations and call to action


- CAPEX incentives to bridge the cost gap between purchasing diesel and battery electric vehicles (BEVs).
- Revision of the legislation regarding white certificates, inspired by the French model.
- Insurance for electric vehicles in other countries is less expensive than that for diesel vehicles.
- Experimental application of the "Eurovignette" on the optimal routes identified in the study "Optimal areas for charging etrucks" to promote electrification.
- Facilitate collaborations between transport operators, energy suppliers/CPOs, and local authorities to reduce the already significant CAPEX investments required for truck purchases and the infrastructure needed for charging stations.
- Extension of the energy-intensive regulations to large logistics and local public transport (LPT) companies to reduce costs.
- Leverage the positive externalities generated by the transition to electric vehicles by creating credit systems that certify the decarbonization of logistics. This would facilitate ESG reporting, access to subsidized financing, and additional tools that do not impact the state budget but support the transition and integration into the ETS2 mechanism.

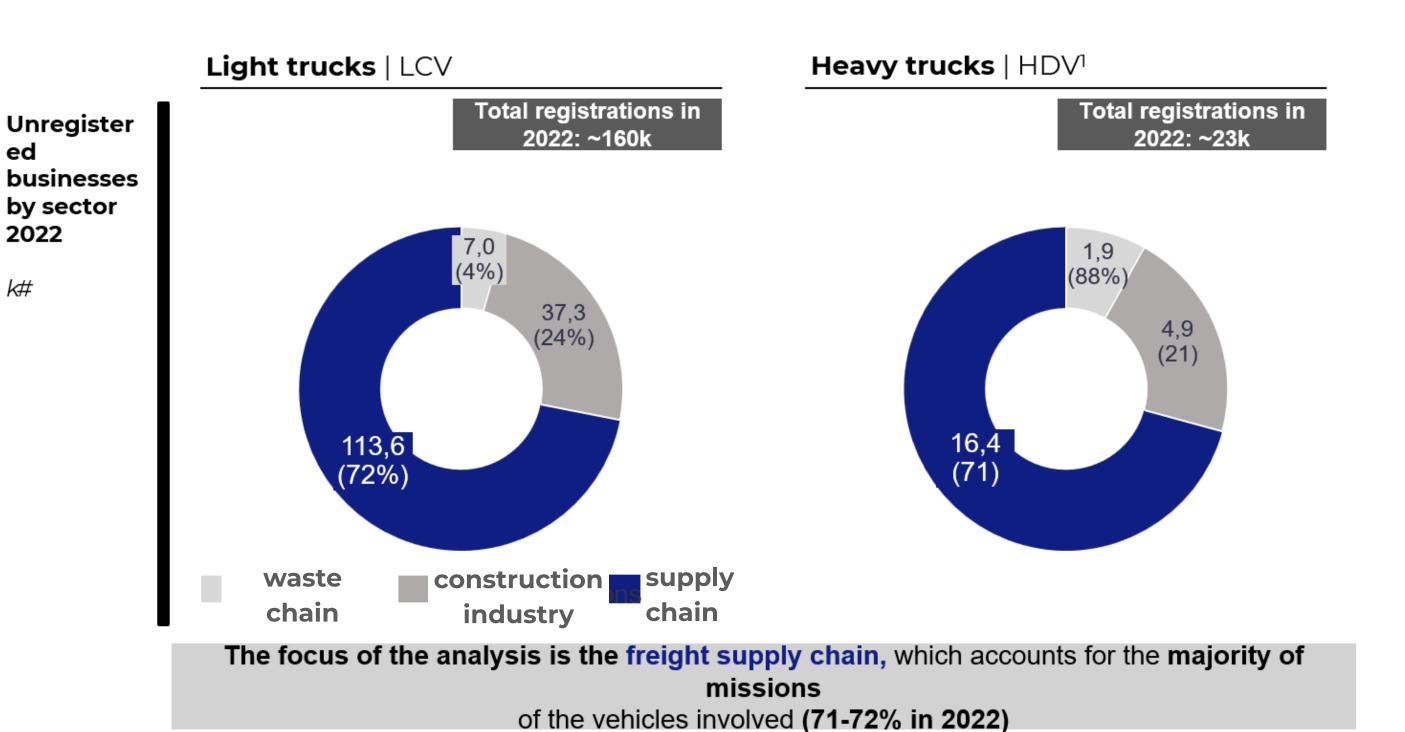
Deep-dive sul Total Cost of Ownership


The alternative fuel truck market

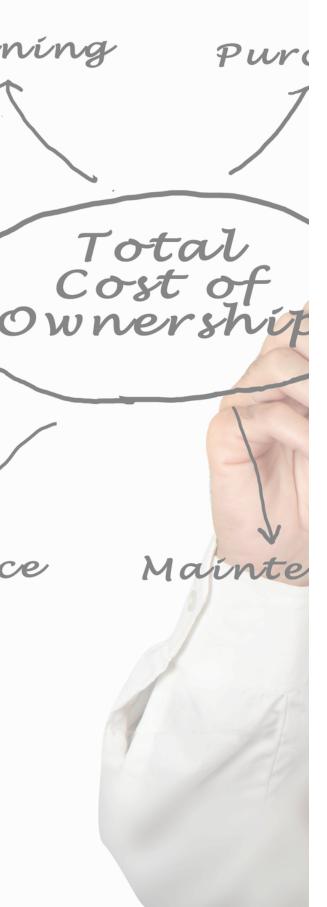
Note: 2025 data is YTD, updated until April 2025; 1) 2024 data, ACI 2) Dataforce Source: European Alternative Fuels Observatory, ACI

The alternative fuel bus market

Note: 2025 data is YTD, updated until April 2025; 1) 2024 data, ACI | Fonti: European Alternative Fuels Observatory, ACI



Focus on the LCV and HDV freight supply chain



ed

k#

TCO cost items

Main hypotheses

Variable	Unit of measure ment	LCV - Diesel	LCV - BEV	HDV - Diesel	HDV - BEV	HDV - LNG	Bus - Diesel	Bus - BEV	Bus - CNG
Purchase cost	k€	27	43	125	305	160	200	390	205
Fuel consumption	l/km, kWh/km, g/km	0,08	0,30	0,24	1,03	0,25	0,41	1,00	0,41
Maintenance	€/year	400-800	200-500	6.000	5.400	7.500	16.000	10.000	17.000
Insurance	€/year	1. 800	1.450	3.150	5.350	4.000	5.000	5.000	5.125
AdBlue consumption	l/km	0,01 (10% diesel)		0,02 (10% diesel)			0,04 (10% diesel)		
Terminal value after 6 years	%	25%	25%	25%	25%	25%	25%	25%	25%
Toll	€/km	1	-	0,16	0,16	0,16	1	-	-
% top-ups in deposit	%	-	100%	-	80%	-	-	100%	-
Electrical infrastructure	% vs. purchase	-	8-10%	-	8-10%	-	-	8-10%	-
Average annual mileage	k*km	8	0		120			55	

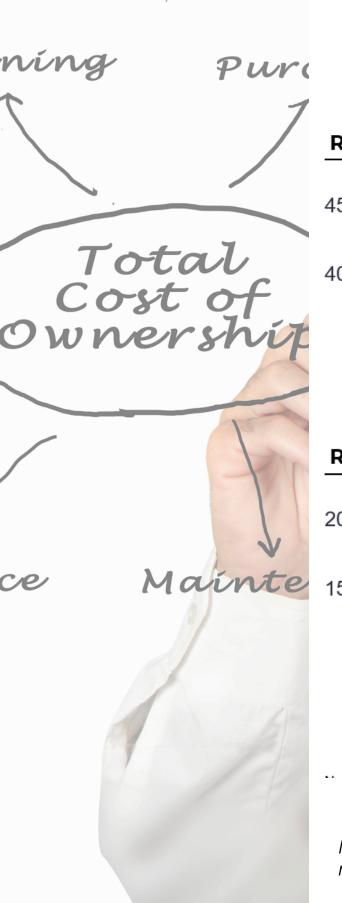
Collection of key assumptions and cost items from Motus-E members and industry literature

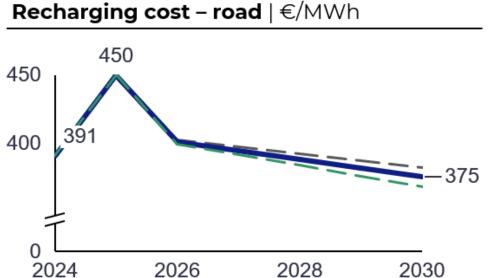
Considerations collected from members

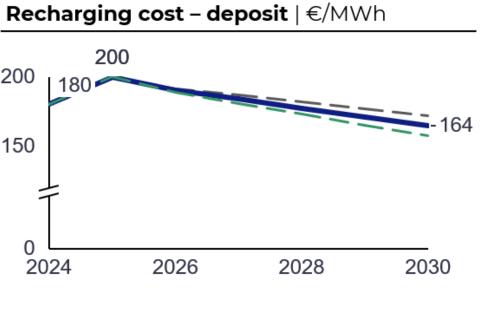
Maintenance

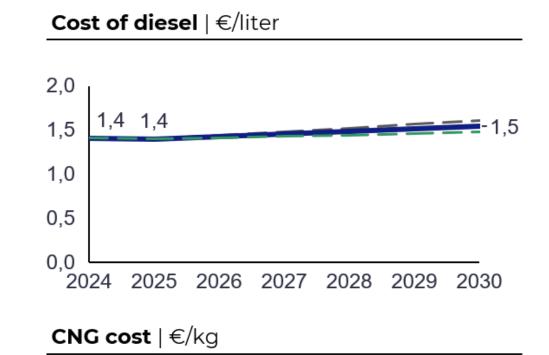
- Electric vehicles incur lower maintenance and higher repair costs vs. diesel; while LNG/CNG vehicles have higher maintenance costs vs. diesel.
- For trucks, the item includes ordinary maintenance and repairs; for buses, fullservice ordinary + extraordinary packages are purchased.

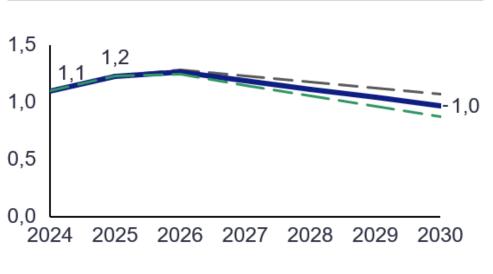
Insurance

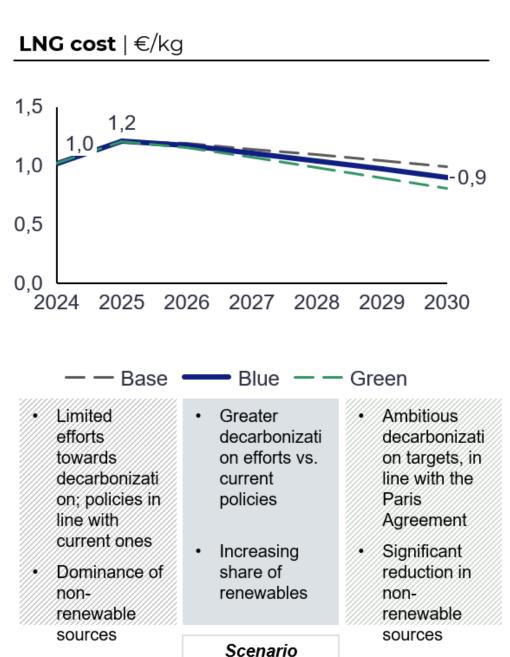

 Insurance costs include RCA + Kasko, in line with the typical choices of a BEV owner

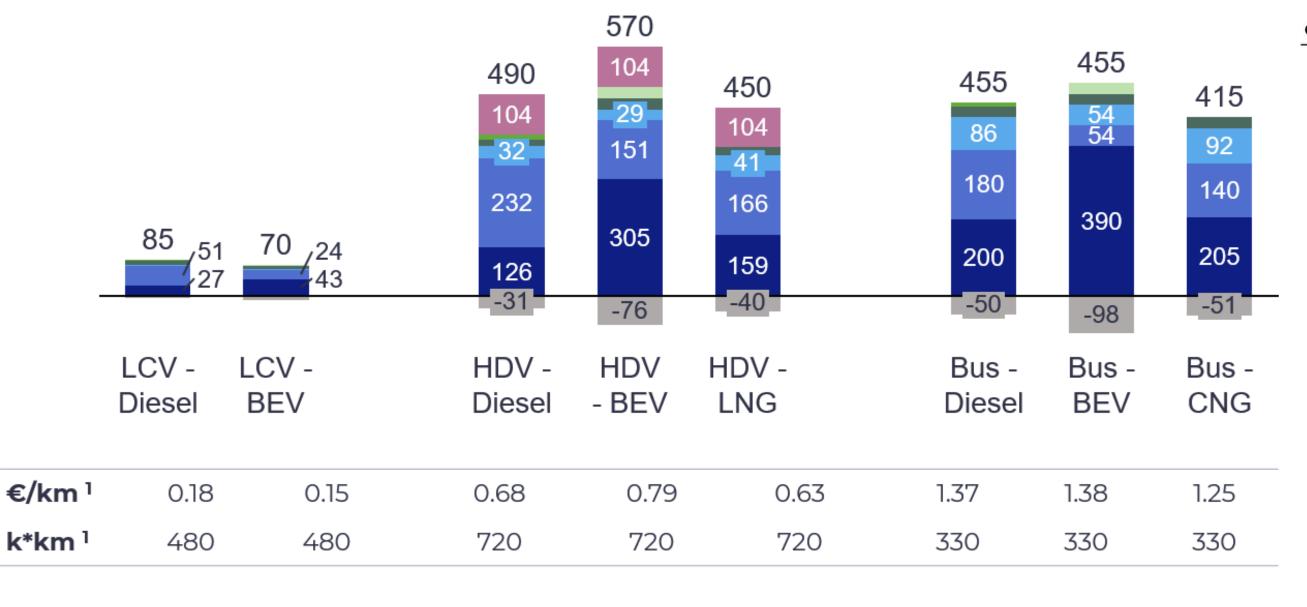

Terminal Value


- A terminal value of 25% was applied to all vehicle types, considering for electric vehicles:
 - Less mature and more rapidly obsolete technology
 - Greater possibilities for revamping the vehicle by replacing the battery and increasing its useful life
 - Potential introduction of incentive schemes in the next 6 years




TCO Cost Items - Fuel



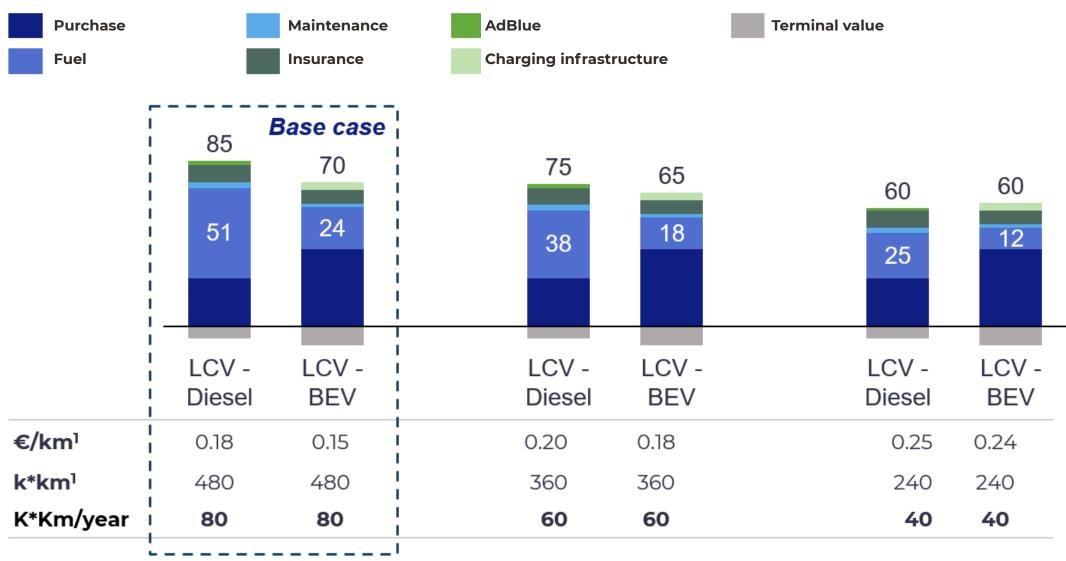

Note: Selected average energy scenario for fuel cost projections. Values net of VAT. Sources: MASE, Motus-e members for historical values; projections prepared by the working group / expert interview

considered

Competitive EVs in the LCV and Bus segments Additional levers to be activated for HDV

Comments

- To date. BEV vehicles are competitive vs. Diesel in the light truck and bus segments
- The TCO of electric vehicles has a **higher incidence of** purchase cost and lower operating costs vs. diesel / LNG / CNG
- The largest TCO delta in BEVs vs. traditional sources is on heavy-duty trucks, particularly due to the difference in vehicle purchase cost.


CIC

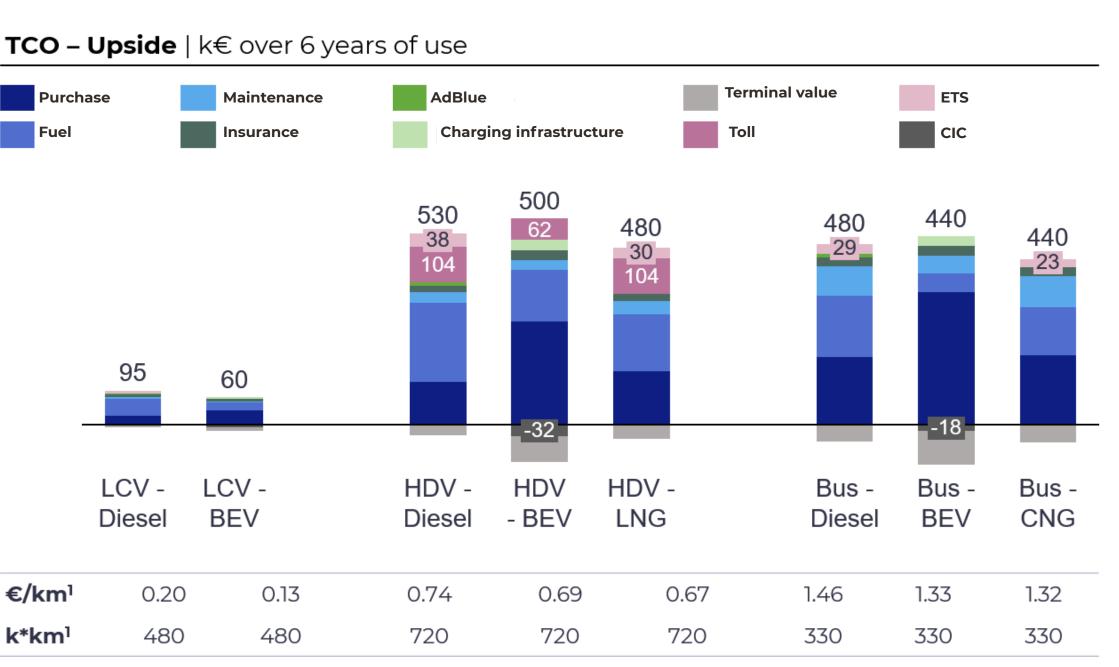
Focus LCV with lower mileage

LCV TCO – Mileage simulation | k€ over 6 years of use

Comments

- Given the lower fuel costs, the cost-effectiveness of electric vehicles vs. diesel is strongly linked to the mileage of the vehicles
- Simulating lower mileage, the ΔTCO between BEV and diesel is reduced to zero at around 160km/day

Note: Assuming parity of other cost items, in the different mileage bands 1) Considering total km over 6 years of useful life; cost items considered non-exhaustive and focused on differential costs. Sources: literature research. Motus E associates


TCO results - Upside (live normative)

ning Purc Scenarios and rationales Main hypotheses Impact on TCO | €k over 6 years of use (\(\Delta \) vs. baseline) **LCV LCV HDV HDV** Bus Bus Bus **HDV Diesel BEV Diesel BEV** LNG **Diesel BEV** CNG Considers current market **Base case** rules; excludes N.a. Total 86 70 492 572 450 453 457 414 regulatory/financial upside for Cost of wnershit Target It represents the target incentive to achieve incentive N.a. competitiveness of BEVs vs. N.a. N.a. N.a. N.a. 453 (-4) N.a. N.a. (-80)Diesel (e.g., non-repayable grants for vehicle purchase) 50% BEV exemption Toll Describes the scenario for the (conservative hypothesis 530 exemption application of the Eurovignette N.a. vs. potential 100% N.a. N.a. N.a. N.a. N.a. N.a. (-42)regulation from 2026 onwards exemption) from 2026 ETS fuel tax B Mainte • ETS projections Introduces ETS on fuels used 530 572 481 481 457 437 • Fuel emission factors (0 95 (+8) 70 (+0) for business activities from (+38)(+O)(+30)(+29)(+O)(+23)for power¹ recharges) 2027 It hypothesizes the introduction • 100€/MWh per CIC Supply of of electric CICs, as per the 540 439 Motus-E proposal to the MASE 6€/MWh per GO electric CICs N.a. N.a. 62 (-8) N.a. N.a. N.a. (-18)(-32)(valuation as the lowest biofuel recognized to date) Total 95 **62** 439 530 498 481 481 437 (+8)(-8)(+38)(-75)(+30)(+29)(-18)(+23)

Purc Total Cost of wnership Mainte

Upside - BEV competitiveness above all

Comments

- Consider 3 upside drivers vs. base case:
- A Partial toll exemption
- B Application of ETS to fuels
- .C Introduction of electric CICs

The **HDV segment,** BEVs are **competitive vs. diesel,** but continue to be less costeffective than LNG

 In the bus segment, BEVs are more affordable than diesel and on par with CNG

Note: 1) Total kilometers considered over a 6-year useful life; cost items considered non-exhaustive and focused on differential costs | Sources: literature research, Motus E associates

Deep-dive on the levers facilitating electrification

Levers enabled to purchase BEVs

Regulatory Measures

Presence of regulatory obligations or incentives that encourage the adoption of green vehicles

Non-repayable contributions

Funds/financing incentives made available for the purchase of green vehicles

02

Debt or credit financial instruments

Various debt/credit instruments (e.g. favorable lending rates) to support the transition

03

Green premium for electric logistics

Additional remuneration for sustainable logistics service

The normative survey

Applicability

Regulatory measures

Clean Vehicles Directive (2019/1161/EU) - Legislative **Decree 187/2021**

Description

- It imposes minimum quotas of "green" purchases in the PA
 - By 2025, 45% of buses and 10% of trucks purchased through public procurement must be "clean" vehicles (methane, electric, etc.), half of which must be zero-emission.
 - target rises to 65% (buses) and 15% (trucks) in 2030

National Strategic Plan for Sustainable Mobility (PSNMS) -Prime Ministerial Decree 17/4/2019

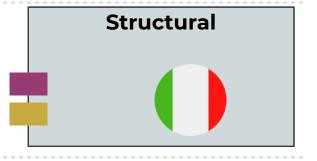
- National program for the renewal of public transport buses by 2033; ~€250 million/year allocated from 2020 to 2033 (after €200 million in 2019)
- State co-financing: 60% for the purchase of methane-fueled buses (CNG/LNG) and 80% for electric or hydrogen buses in urban services; 80% for urban services.
- **Eurovignette Differentiated** CO₂ tolls - Directive 1999/62/EC and subsequent amendments
- From March 2022, EU legislation allows for reductions of up to 100% in tolls for zero-emission vehicles and increases for the most polluting ones.
- The European Commission recently proposed extending the zero tolls from January 2026 to March 2031 to ensure cost parity between electric and diesel vehicles.
- **Minimum Environmental** Criteria (CAM) for vehicles -**Ministerial Decree MiTE** 2/7/2021)
- Mandatory criteria for public administration purchases in line with the Clean Vehicles Directive
- They impose the purchase of low-impact vehicles in public tenders (e.g. prioritization of electric, hybrid or methane buses)

Applicability

Regulatory measures

Stamp duty exemption and local tax reductions

Description


- In all Italian regions, 100% electric vehicles enjoy a 5-year road tax exemption, after which they only pay 25% of the rate.
- In some regions the exemption is more extensive: (e.g. Piedmont, electric or 100% methane vehicles obtain permanent exemption from the road tax)
- Bi-fuel vehicles (petrol/methane) of origin enjoy partial exemptions

Applicability

Reduced excise duties and **VAT on methane/biomethane**

• Methane fuel for motor vehicles has historically enjoyed a much lower excise duty than diesel (as well as a reduced VAT rate).

Incentives for microenterprises (electric N1 and N2 vehicles)

• Microenterprises (<10 employees, ≤€2 million turnover) in functional urban areas (cities with over 50,000 inhabitants and their commuting zones): incentives of up to €20,000 (max 30%) for N1/N2 electric vehicles, maximum 2 per company, with Euro 0–5 scrapping. Direct discount at the dealership, validation within 30 days. Budget: €597 million from PNRR funds. Valid from September 2025 to June 2026.

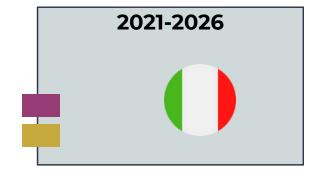
Thermal Account 3.0 for charging stations

• Incentives the installation of charging stations if installed with heat pumps. The subsidy is up to 65%, accessible to individuals, businesses, the third sector, and CERs (budget €900 million/year).

26

Non-repayable grants

Applicability


Regulatory measures

Road transport incentives alternative-powered vehicles (Ministry of Transport **Decrees 2021-2024)**

Description

• Government grants for the purchase of eco-friendly trucks. €50 million for 2021-2026 for hybrid (diesel/electric), electric, CNG, and LNG vehicles, with incentives ranging from €4,000 (e.g., hybrid vehicles 3.5–7 tons) up to €24,000 for electric vehicles >16 tons. An additional €1,000 bonus is awarded if a diesel vehicle is scrapped at the same time. The fund is refinanced with €25 million (Ministerial Decree 6/8/2024) for purchases from 14/9/2024.

Applicability

PNRR - Rinnovo flotte bus TPL "green"

- Financing with PNRR funds for the purchase of eco-friendly buses for public transport.
- Approximately €1.8 billion has been allocated for 2,500 new zeroemission buses to be awarded in 2023 (target: ~3,000 buses by 2026).

Regional "Vehicle Renewal" **Incentives**

- Several Regions are offering tenders for SMEs and private individuals for the scrapping of polluting vehicles and the purchase of low-emission vehicles.
- Example: Lombardy 2024-25: contributions (up to €4,000 per vehicle) for companies that replace petrol vehicles ≤Euro2 or diesel vehicles ≤Euro5

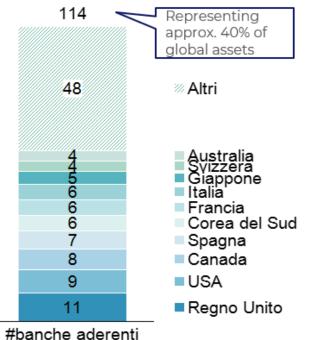
Charging Station Bonus for Businesses and Professionals

- Non-repayable grant equal to 40% of the costs for the purchase and installation of electric charging infrastructure at companies/studios
- Maximum amounts per device (€2.5k for a single wallbox, €8k for a double AC column, €75k for a DC column >100 kW) and additional costs

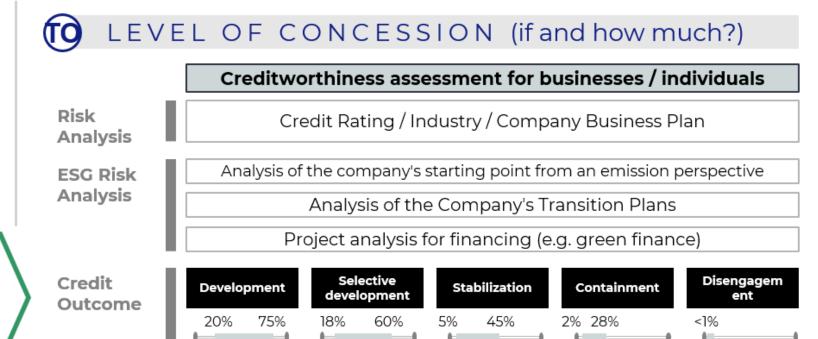
03

Banks are integrating ESG into credit ratings and expanding their ESG product portfolios

Growing ESG relevance with alliances like the NZBA...


CONTEXT

The Net-Zero Banking Alliance
(NZBA) is a United Nations initiative
(UNEP FI) launched in April 2021 with
the aim of accelerating the
sustainable transition of the
international banking sector.


GOALS

- Aligning loan and investment portfolios
- With the aim of achieving net zero emissions by 2050
- Applying science- based principles, in line with the Paris Climate Agreement (<1.5°C vs. pre -industrial levels)
- Perimeter: Scope 1, Scope 2, Scope 3 emissions
- Guidelines for Scope 3 Emissions Category
 15: Credits and Investments



... with revision of the granting criteria and tools

Various tools between Italian and European banks to support sustainability projects

03

DEBT INSTRUMENTS ...

Sustainability-linked

- Financing with conditions (incl. interest rates) linked to the achievement of specific sustainability targets (SPTs 1)
- Goals are measured against the company's ESG KPIs
- **Benefit** upon reaching targets of $\sim 0.1 0.2\%$ on the rate

Project specific

E- mobility specific

Green financing (project finance)

- Financing with funds exclusively earmarked for projects with a positive impact on the environment
- Green Loans specific for green projects (project fin)
- ~ 0.5-1% lower rate vs. standard financing

Project specific

E- mobility specific

E- mobility financing specific (project finance)

- Category of Green Loans intended exclusively for electric mobility projects
- They support the purchase of electric vehicles (EVs), charging infrastructure and other related technologies (e.g. PV)

Project specific

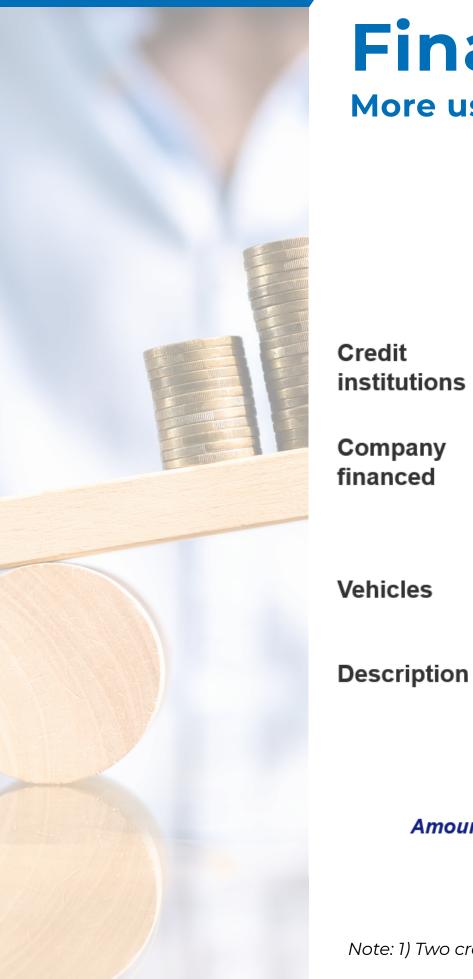
E- mobility specific

...AND CREDIT

Certificates of Release for Consumption (CIC) / White Certificates

Electric CICs : RED-III proposal brought to MASE by Motus-E

TOOLS PROVIDED BY... (not exhaustive)



White certificates:

white certificates for fleet electrification

More use cases for financing dedicated to the transition vs. electric mobility

FREIGHT **VEHICLES**

LOCAL PUBLIC TRANSPORT

Credit institutions

AMTGenova

Public transport operator (Genoa)

Electrification of the bus

fleet for urban and extra-

70 million euros

Assisted revolving

urban lines

BPER:

Public Service Company (Asti)

- Partially guaranteed financing by SACE / waiting for PNRR funds
- Electrification of the bus fleet

17 M€ ¹

Public transport operator by road and rail (Abruzzo)

- Unsecured loan
- Decarbonization of TUA's bus fleet (conversion to electric and LNG vehicles)

10 million euros

Transport and logistics systems company (Bergamo)

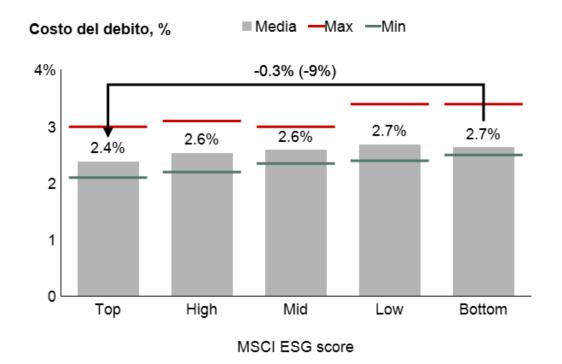
- · Financing supported by Sace 's 80% Green Guarantee
- Fleet renewal

5 million euros

Amount

Note: 1) Two credit lines for €12 million awaiting PNRR funding, one credit line for €5 million with a SACE guarantee | Source: desk research

According to MSCI, ~0.3% Δ cost of debt between top and bottom performers in ESG ratings


CONTEXT

- MSCI published a report in 2024 that analyses the relationship between ESG ratings (of which it is a provider) and the cost of capital
- The ratio is assumed to be negative because exposure and ability to manage ESG risks influence a company's risk profile and consequently the ease with which it raises capital (equity and debt).

Cost of debt vs. MSCI scoring

- Strong historical correlation between a company's MSCI ESG rating and its financing costs
- companies have higher debt costs (>2.5%) vs. higher-rated companies financed at lower rates (<2.5% on average)

Cost of capital vs. ESG pillar and IAS score

- Negative correlations between E, S and G pillar scores and the cost of capital in different sectors (i.e. better score correlates with lower financing costs)
- The overall assessment (IAS score) shows a stronger correlation with the cost of capital than the individual pillars

Correlation matrix with cost of capital (MSCI)

MAIN RESULTS

	IAS	AND	S	G
Communic . services	-0.24	-0.25	-0.21	-0.17
Consumer discretionary	0.02	-0.04	0.01	0.05
Consumer staples	-0.31	-0.15	-0.22	-0.16
Energy	-0.06	-0.14	-0.10	0.10
Financials	-0.08	0.04	-0.09	0.06
Healthcare	-0.25	-0.19	-0.07	-0.23
Industrials	-0.15	-0.13	-0.05	-0.03
Information technology	-0.25	-0.17	-0.05	-0.09
Materials	-0.21	-0.28	-0.17	-0.06
Real estate	-0.05	-0.05	0.02	-0.13
Utilities	-0.07	0.06	0.04	-0.15

Correlation coefficient:

-0.3

0.3

Customers are willing to pay a premium for sustainable logistics services

04

Value in a "green" brand

- Especially in B2C sectors, sustainability is becoming a relevant element for brand positioning
- The effort towards decarbonisation often includes Scope 3 emissions;
 i.e. emissions from one's customers and suppliers (including logistics ones)

Examples of targets on Goal 3 @2030

Goal 3 Target (@2030)

Specific targets on logistics

FERRERO II

-43% Scope 3 emissions including materials, logistics, and packaging

100% green vehicles for S. Pellegrino water logistics

-25% scope 3 emissions per ton of product sold

Financial benefits

- Like logistics companies, their customers can also enjoy financial benefits for the decarbonisation journey
- This may incentivize them to select suppliers that increase the banks' ESG scores towards them.

Green premium

 Companies may therefore be willing to pay a green premium to their suppliers for a more sustainable good/service (such as an electric logistics service vs. from a traditional source)

Examples of benefits financial

Market Research Examples (Europe)

Chemicals: >95% of customers willing to pay green premium (of which 35%+ over 5%)

Metals: >90% of customers are willing to pay a green premium (of which 35% are willing to pay more than 5%)

Automotive: >90% of customers are willing to pay a green premium (of which **50%+ over 5%**)

Best practices in electrification that can serve as examples for future projects

The electrification of freight transport

A sustainable future in the transport of dangerous goods

MAN and Esseco Industrial have developed a new sustainable business model through a partnership aimed at the energy transition in the hazardous goods transport sector.

- Esseco Industrial, a family-owned company with over 100 years of history, supplies products to the chemical industry and strives for sustainability, despite operating in a sector considered "hard to abate."
- The MAN eTGX vehicles, the first electric ADR vehicles sold in Italy, were purchased by operators Germani and Burchianti and are equipped with advanced technologies for safety and efficiency.
- The company meets nearly two-thirds of the overall energy needs using zeroemission sources.
- The initiative demonstrates how the transition is possible even in energy-intensive sectors, thanks to MAN's technical-economic models and electrocompatibility analysis.

Sustainable Logistics Partnership

link to the press release

Volvo and Four Sustainable Logistics team up for zero-emission logistics

Thanks to the new Volvo Trucks (FHE 4x2 and FEE 6x2), Four Sustainable Logistics increases its zeroemission fleet to 40 vehicles, becoming a pioneer of sustainable logistics in Italy and Europe.

- In partnership with Volvo Trucks Italia, the company is testing new charging packages and digital services to optimize mileage and costs, with the goal of reaching 50 electric trucks by 2025.
- Born from a strategic alliance between historic logistics entrepreneurs, Four integrates the concept of Corporate Social Responsibility (CSR) into its strategies, anticipating the needs of a market increasingly sensitive to environmental and social issues.

With a network of 115 green vehicles and participation in SOS LOGistica (an association for sustainable logistics of which Volvo Trucks is a partner), the company confirms its role as a pioneer in decarbonization, supporting customers and partners towards zero-emission solutions.

The transition of public transport

link to the press release

The Fleet-as-a-Service model

With the Fleet-as-a-Service (FaaS) model, E-GAP has brought over 250 electric buses to the streets of Rome, completing one of the largest public transport electrification projects in Europe.

FaaS is a modular, turnkey solution that integrates electric vehicles, charging infrastructure, maintenance, energy performance monitoring, and other ancillary services within a single platform.

Industrial expertise and financial strength make E-GAP the right strategic partner for industry operators, who interact with a single entity throughout every phase of the process.

Benefits of FaaS

No initial investment by the operators, the cost is covered by E-GAP and then converted into a periodic and personalized fee.

Long-term optimizations and partnerships reduce the TCO of e-buses by a further 10-15%.

